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Abstract
The design of risers is a very important issue for the offshore exploration of oil and gas as they are essential components of floating
production systems (FPS). Many aspects involve the design of those structures mainly security and cost savings. Those demands
include the optimum design of the riser configuration.
The current tendency in the design of risers for FPSs considers the use of nonlinear, time-domain dynamic analysis tools, comprising
either a coupled analysis strategy (where a hydrodynamic model of the floating system is coupled to a finite element structural and
hydrodynamic model of the mooring lines and risers), or else an uncoupled strategy where the finite-element model of an individual
line is analyzed, submitted to the motions of the platform. In either case, it is employed a time-domain dynamic simulation that
requires a large amount of computational time. Thus, it is necessary the development of computational tools able to improve the
efficiency in the design of risers through optimization methods. This work presents a study of the Particle Swarm Optimization
method (PSO) applied to the design of risers in lazy wave configuration.
The PSO method has shown good efficiency but its performance greatly depends on its parameters settings. In order to improve the
PSO performance, we analyze the behavior of its parameters through several experiments. The results show that some default values
initially used were not the best ones to obtain a good performance of the PSO algorithm when applied to the design of risers. The best
parameter selection will be included in the OtimRiser program – a computational tool that uses several optimization methods based
on evolutionary concepts.
Keywords: Offshore Systems, Risers, Particle Swarm Optimization

1. Introduction
The increasing development of petroleum activities in deep and ultra-deep water has encouraged the demands for floating production
systems (FPS). Many aspects involve the design of those structures mainly security and cost savings. Those demands include the
optimum design of the steel catenary riser (SCR) configuration, since, for ultra-deep waters, flexible risers can frequently reach or
exceed the technical and economical feasibility limits.
The current tendency in the design of risers for FPSs considers the use of non-linear, time-domain dynamic analysis tools,
comprising either a coupled analysis strategy (where a hydrodynamic model of the floating system is coupled to a finite element
structural and hydrodynamic model of the mooring lines and risers), or else an uncoupled strategy where the finite-element model of
an individual line is analyzed, submitted to the motions of the platform. In either case, it is employed a time-domain dynamic
simulation that requires a large amount of computational time. Thus, it is necessary the development of computational tools able to
improve the efficiency in the design of risers through optimization methods.
Optimization methods based on evolutionary concepts, as the Particle Swarm Optimization method (PSO), can be used to find an
optimum solution to the problem of design of risers. Vieira [1] presents an application of Genetic Algorithms (GAs) and Lima et al.
[2] presents an application of a hybrid Fuzzy/GA algorithm applied to the o design of risers.
The Particle Swarm Optimization method (PSO) is a member of the wide category of Swarm Intelligence methods [3], for solving
optimization problems. It was originally proposed by James Kennedy and Russel Eberhart as a simulation of social behavior, and it
was initially introduced as an optimization method in 1995 [4, 5]. PSO has attracted much attention from computer science and
technology communities. It is related with artificial life, specifically to swarming theory, and also with evolutionary computing,
especially evolution strategies and genetic algorithms [6].
PSO can solve a variety of difficult optimization problems and has shown a faster convergence rate than other evolutionary
algorithms on some problems [7, 8]. Another advantage of PSO is that it has very few parameters to adjust, which makes it
particularly easy to implement.
In spite of being recent, the PSO algorithm has been proved to be useful on diverse applications [9 − 26]. On offshore petroleum
exploration research field, Albrecht [27] presents an application of the PSO algorithm to the design of mooring systems.
Although its efficiency, the PSO algorithm performance greatly depends on its parameters settings. A bad choice to the parameter
values can cause a premature convergence (finding a local, but not global, optimum) or even cause an oscillatory behavior of the
particles near to the optimum solution with slow convergence. Trelea [28] presents a theoretical analysis of the PSO algorithm, where
it defines some standard ideas to make a good choice in the parameters values. Even though, it is necessary an analysis for each
application of the PSO algorithm, because certain values can be good to achieve convergence of one function, but not so good to
achieve convergence of other functions.
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In this work, we present a convergence analysis of the PSO algorithm applied to the design of risers, testing different parameter
settings through several experiments. For the experimental tests, we will use an implementation of the PSO algorithm applied to the
design of risers called OtimRiser – a computational tool that uses several optimization methods based on evolutionary concepts
associated to the design of risers systems.
This paper is organized as follows: In section 2, we present the standard formulation of the PSO algorithm. In section 3, we show
some variations of the PSO developed by different researchers to improve the performance of the method. The problem formulation
of the design of risers and the implementation details of the PSO in OtimRiser are presented in section 4. In section 5, we show the
algorithm analysis and our experimental results. In section 6, we present our conclusions.

2. The Particle Swarm Optimization method (PSO)
The Particle Swarm Optimization method (PSO) was developed by Kennedy and Eberhardt, based on observations of the social
behavior of animals such as bird flocking and fish schooling [4]. In the PSO method, each individual, called particle, moves through
cooperation and competition by successive iterations. The particles learn from their own past experiences and from their neighbors’
experiences, by evaluating themselves, comparing their performance with others from the population and imitating only those
individuals with more success than themselves. Those movements through the search space are guided by the best evaluations, with
the population usually converging on a good problem solution. The quality of those solutions are measured by a predefined fitness
function, which is problem-dependent.
Each particle of the swarm is represented by its current position in the search space and its current velocity, which means its change
of position. It flies remembering the best search space position it has ever visited and towards the best individual of a topological
neighborhood.
The search space is L-Dimensional, and the particle is represented by three L-Dimensional vectors: the current position vector xi, the
previous best position pi and a velocity vector vi.
To achieve a better performance, Shi and Eberhardt [29] proposed a modification in the standard algorithm introducing coefficients
to control the influence of the global best, of the previous best and of the inertia in the particle movement behavior. Therefore, the fly
of a particle i is expressed in Eq. (1) as a movement from position x at iteration t with velocity v:

)1()()1( ++=+ tvtxtx iii  (1)
The velocity vector is updated according to the best previously visited position of the i-th particle pi and the best position found by all
particles in the swarm, pg:

))((   ))((   )(*)1( 21 txprnd**Ctxp*rnd *Ctvtv iiigii −+−+=+ ω  (2)
where ω is the inertia weight introduced in order to support the balance between exploration and exploitation. The constants, C1 and
C2, are employed to determine the balance between the influence of the particles set (C1) and that of the individual’s knowledge (C2).
Those coefficients are called social and cognitive parameters, respectively, as they can weigh the social influence (second term on the
right-hand side of Eq. (2), or, the cognitive learning (last term of Eq. (2)). The values of rnd are random numbers from uniform
distributions in the range [0,1]. The terms (pg – xi) e (pi – xi) are called terms of acceleration by distance [4], because they control the
velocity variation.
The current position xi can be considered as a set of coordinates describing a point in the space. In each iteration of the algorithm, the
current position is evaluated as a problem solution. If that position is better than any that has been found so far, then the coordinates
are stored in the second vector, pi. The value of the best function result so far is stored in a variable that can be called pbesti (for
“previous best”), for comparison on later iterations. The objective, of course, is to keep finding better positions and updating pi and
pbesti. New points are chosen by adding vi coordinates to xi, and the algorithm operates by adjusting vi, which can effectively be seen
as a step size [30].
The PSO algorithm is constructed as follows:

1. Initialize a population array of particles with random positions and velocities on L dimensions in the search space.
2. For each particle, evaluate the desired optimization fitness function in L variables.
3. Compare particle’s fitness evaluation with its pbesti. If current value is better than pbesti, then set pbesti equal to the current

value, and pi equal to the current location xi in L-dimensional space.
4. Identify the particle in the population with the best success so far, and assign its index to the variable g (updating pg).
5. Update the velocity and the position of each particle according to Eq. (2) and Eq. (1).
6. Repeat steps 2 to 5 until the stopping criteria is met (usually a sufficiently good fitness or a maximum number of iterations)

To reduce the possibility of particles flying out of the search space, Kennedy and Eberhardt [5] put forward a clamping scheme that
limited the speed of each particle to a range [−vmax, +vmax] with vmax calculated as shown in Eq. (3).

minmaxmax xxv −=  (3)
where maxx  and minx  are the lower and upper bounds of the search space, respectively.

3. PSO Variants
Many tweaks and adjustments have been made to the standard PSO algorithm over the past decade. Some have resulted in improved
general performance, and some have improved performance on particular kinds of problems. We present here some of these variants.

3.1. Passive Congregation and Social Attraction
The PSO algorithm is inspired by social behaviors such as spatial order, more specially, aggregation such as bird flocking, fish
schooling, or swarming of insects. Each of these cases has stable spatio-temporal integrities of the group of organisms: the group
moves persistently as a whole without losing the shape and density [31].
For each of these groups, different biological forces are essential for preserving the group’s integrity: the aggregation and the
congregation forces. These forces can be active or passive.
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The aggregation force refers to a grouping of the organisms by non-social, external, physical forces. Active aggregation is a grouping
by attractive resource, such as food, with each member of the group recruited to a specific location actively. The passive aggregation
is a passive grouping by physical processes.
Different from aggregation, congregation is a grouping by social forces, that is, the attractive resource is the group itself. Passive
congregation is an attraction of an individual to other group members but where there is no display of social behavior. Active
congregation, also known as social congregation, usually happens in a group where the members are related (sometimes highly
related).
We can correlate with active aggregation the terms ))((   1 txp*rnd *C ig −  and ))((   2 txprnd**C ii −  in Eq. (2), if we consider pg

and pi as attractive resources for the group members.
He et al. [33] proposed the introduction of a term in PSO related to the passive congregation force, in other words, a term that
represents the attraction of an individual to other group members but where there is no display of social behavior. This involves a
particle selected randomly from the swarm and a passive congregation coefficient. Albrecht [27] proposed a similar approach for the
influence of the group on the individual denominated Social Attraction, where the passive congregation term involves the center of
mass of the swarm, not a particle selected randomly from the swarm.
The new term added is defined in Eq. (4).

))((   3 txCrnd**C im −  (4)
where C3 is the passive congregation coefficient and the particle Cm is the center of mass of the swarm, where the mass of the particle
is represented by the fitness value of the particle, as following (Eq. (5)).
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Adding this new term in Eq.(2), the PSO algorithm is now given by Eq.(6).
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3.2. Linear Variation of the Inertia Coefficient
The PSO algorithm presents some difficult to converge to the global optimum in the last iterations. It is very efficient at the
beginning of the search but it tends to waste time (or some iterations) when close to the optimum. The inertia weight plays an
important task in this convergence behavior of the algorithm. In [29] several experiments were driven to assess the influence of the
inertia weight. They concluded that for smaller values of inertia weight, the PSO behaves like a local search algorithm and for larger
inertia weights the PSO presents a good global exploration always trying to explore new areas.
Eberhardt and Shi [32] proposed that the inertia coefficient ω should be linearly variant, instead of being constant. Therefore, the
inertia coefficient is given by Eq. (7).
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−

−=)(  (7)

where N is the maximum number of iterations. iniω  and finω  are the initial and the final inertia weights, respectively.

3.3. Non-Linear Variation of the Inertia Coefficient
To improve the PSO performance in the last iterations, Chatterjee e Siarry [33] proposed a non-linearly variation of the inertia
coefficient, given by Eq. (8).
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where n is the non-linearity exponent.
With this formulation, the inertia influence can be controlled. The initial and final values of the inertia coefficient are pre-determined,
but its behavior during the iterations depends on the value of n.
Albrecht [27] proposed a modification in Eq.(8), as following.

( )
n

n
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−=ω  (9)

where n and K are the elements of control of the non-linear variation.
Using Eq. (9), the inertia weight ω will be K  at the beginning of the process, and K−1, at the end.

3.4. Linear Variation of the Aggregation and Congregation Coefficients
Following the idea the linearly variant inertia weight, Ratnaweera and Halgamuge [34] proposed the linear variation of the
aggregation coefficients (C1 and C2). The equations for these variations are given in Eq. (10) and Eq. (11).
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where iniC1 , finC1  are the initial and final values of C1 and iniC2 , finC2  are the initial and final values of C2, respectively.
These modifications in the calculation of the coefficients improved the algorithm performance, as shown in [34, 35].
In the OtimRiser implementation of the PSO algorithm, the congregation coefficient (C3) is also linearly variant. The equation for the
variation is given in Eq. (12).

( ) iniinifin C
N
t CCtC 3333 )( +−=  (12)

where iniC3 , finC3  are the initial and final values of C3, respectively.

4. The PSO Algorithm Applied to the Design of Risers
The PSO algorithm with the variations mentioned above was implemented in the OtimRiser program. The OtimRiser is a
computational tool that uses several optimization methods based on evolutionary concepts and is still being developed by a group of
researchers and students of the Civil Engineering Program/COPPE/UFRJ.
A detailed explanation about the implementation of some evolutionary algorithms (Genetic Algorithm, Micro-Genetic Algorithm,
PSO and Evolutive Strategy) applied to the design of mooring systems can be seen in [27]. In this work, we focus only on the results
of the Particle Swarm Optimization method applied to the design of risers.

4.1. The Problem of Designing Risers
Petroleum industries around the world have been faced with the permanent challenge of developing oil production activities in deep
and ultra-deep waters. One particular aspect of these activities regards the optimum design of the steel catenary riser (SCR)
configuration, since, for ultra-deep waters, flexible risers can frequently reach or exceed the technical and economical feasibility
limits.
The authors have previously studied the use of SCRs installed in FPSs [36, 37]. In these studies several different alternative
configurations of SCRs were considered, including the free-hanging catenary and other configurations with flexing and/or floating
elements such as the lazy wave, steep-wave, lazy-S and steep-S configurations (Fig. 1). The behavior of these configurations was
simulated by several non-linear time-domain dynamic analyses. These studies have shown, as expected, that configurations with
floating elements such as the lazy wave configuration present a structural behavior more favorable than the free-hanging catenary,
both to extreme conditions and to operation/fatigue conditions. Although the free-hanging catenary presents smaller costs and the
feasibility may be proven in some particular situations, the lazy wave configuration was selected as a base case, and more detailed
studies were performed in [38].
The Lazy wave configuration (Fig. 1f) may be defined as a double catenary arrangement, with an intermediate segment comprised of
distributed buoys. This segment alleviates the weight supported by the floating unit, and contributes with restoring moments when
submitted to lateral loads.

Figure 1. Some catenary configurations assumed by the risers.

The exhaustive parametric studies of Jacob et al. [36 − 38] comprised a hard task, involving the ‘manual’ variation of different
geometric parameters and environmental data. Thus, in order to find a configuration with minimum effort, this work presents a study
of the Particle Swarm Optimization method (PSO) applied to the design of risers in lazy wave configuration.
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Figure 2. The project variables.

The project variables of the optimization process are the global geometric values presented in Figure 2:
• L1 - Length of top segment of the riser
• L2 - Length of segment with distributed buoys
• L3 - Length of lower riser segment
• α - Top angle (angle between the top riser axis and the vertical direction)
• H - Still water level
• z - Connection depth
• P - Horizontal projection
• Buoys characteristics:

 HDf - External diameter
 Lf - Length
 Esp - Spacing between buoys

• Other variables:
 Rhof - Weight of the buoys
 Mechanic and Geometric section properties

To simplify the optimization problem, the main project variables were chosen as search variables: L1, L2, L3, HDf, Lf and Esp. The
values of the other project variables are calculated from these search parameters or are given by fixed input values (as defined in [1]).
In OtimRiser it is possible to select and control the PSO parameters, as well as defining the upper and lower bounds to each search
variables of the problem. Table 1 presents the length limit values that describe the search space used in our tests.

Table 1. Limits of the search variables.

Variable Min. Value Max. Value
L1 800 2000
L2 400 800
L3 800 2000

HDf 0.5 2
Lf 0.5 2

Esp 0.8 1.5

4.2. Objective Function and Project Constraints
In engineering optimization problems, the objective function usually involves the lowest construction cost. In this work, the length
and the cost of each segment as well as the cost of the buoys are taken as the cost function.
Therefore, the objective function of the problem is given by Eq. (13).
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where:
iL – length of segment i

iIC – cost weight of segment i

flutV – buoys volume

flutIC – cost weight of buoys

iParMax – maximal value of parameter i

flutVMax – maximal volume of buoys

The constraints of the present optimization problem involve the risers structural behavior and are presented as following:
• Von Mises stress acting on riser sections
• Top angle -  angle between the riser axis and the vertical direction at the connection with the platform (dictated by installation

requirements):
 Upper bound (set to 5o)
 Lower bound (set to 18o)

• “Built-in” angle variation - measured at the top riser axis, between the neutral equilibrium configuration and any configuration
(set to 5o)

• Maximal tension at the top (set to 1500 kN)
• Minimal tension at the riser bottom (set to 300 kN)

Therefore, the penalty function is defined as follows:
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and k attends to force the arising of non restricted solutions.
Then, the objective function with penalties is given by Eq. (17).
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where jP  is the penalty related to violations of the  j-ith constraint criteria.
Therefore, the maximal fitness value occurs when f is minimal and there are no violations in the behavior constraints.

5. The OtimRiser Analysis
An optimization algorithm must be robust, to deal with functions that describe problems, and accurate, to find an optimum solution.
In the case of risers optimization, which is a process of high computational cost, the algorithm also needs to be efficient, in other
words, it needs to achieve a good result with the lesser number of evaluations of the objective function. The parameters of the PSO
algorithm in Eq. (6) that will be evaluated are the inertia coefficient (ω) and the coefficients C1, C2 and C3. The behavior of the
variation of the coefficients C1, C2 and C3 will be set as increasing or decreasing, depending on their initial and final values in the
Equations (10), (11) e (12). Therefore, we can have 8 different types of configuration for C1, C2 and C3.
We will analyze the behavior of the algorithm according to the type of variation applied to the inertia coefficient (ω) and to the
configuration of C1, C2 and C3. The initial and final values used for each coefficient in each configuration can be seen in Table 2. The
configuration 1 is the one used initially in OtimRiser. We will verify if this configuration is really the one that returns the best results
in PSO.

Table 2. Initial and final values of the coefficients C1, C2 and C3 in each configuration.

C1 C2 C3
Config Initial Final Initial Final Initial Final

1 1 2 1 2 1 2
2 2 1 1 2 2 1
3 1 2 2 1 2 1
4 1 2 2 1 1 2
5 2 1 1 2 1 2
6 1 2 1 2 2 1
7 2 1 2 1 2 1
8 2 1 2 1 1 2

To decrease the number of tests necessary to analyze the algorithm, two types of analysis for each varied parameter had been made.
The first type was the execution with the same random seed, that is, the initial random population is always the same one. In the
second type of analysis, 30 simulations had been made and the average value of the analyses was used as comparison.
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The invariant data in the tests were:
• Size of the population: 10 individuals.
• Maximum number of generations: 100.
• Stopping criterion: maximum number of generations.

The parameters chosen for comparison were:
• Fitness − Maximum value of the objective function reached by the method;
• Number of Evaluations − The total number of evaluations of the objective function;
• Gain − Percentile relation between the best value of the objective function in the first generation (randomly generated) and the

best value in the last generation. The gain indicates how much the method was capable to improve the initial population;
• Efficiency − Relation between the gain and the number of evaluations.

An input variable k plays different roles in function of the different types of inertia coefficient variation. In the equations referring to
each type of variation of inertia, the variable k exerts the following functions:
• Fixed inertia: k = ω;
• Inertia with linear variation: k = iniω  e finω = 0;

• Inertia with nonlinear variation: k = n and K = 1.

5.1. Experimental Results for the Inertia Weight Variation with Fixed Random Seed
We test the algorithm with all 8 configurations of the coefficients C1, C2 and C3 as defined previously. For each configuration, we
made k = 0.8 (fixed). The fitness value of the seed is 0.694 where L1 = 1196.85, L2 = 634.92, L3 = 1026.77, HDf = 1.80, Lf = 0.60
and Esp = 1.00.
Table 2 presents the results of the experimental tests of each configuration of the coefficients C1, C2 and C3, using three different
types of inertia weight variation (fixed, linear and nonlinear).

Table 3. Results of the experimental tests with fixed random seed

Inertia Weight
Fixed Linear Variation Nonlinear VariationConfig

Fitness N. Eval Fitness N. Eval Fitness N. Eval
1 1.894 916 1.745 753 1.851 929
2 1.921 956 1.928 901 1.921 846
3 1.944 956 1.884 792 1.911 929
4 1.923 935 1.727 886 1.932 894
5 1.948 931 1.903 859 1.928 916
6 1.928 808 1.753 708 1.784 860
7 1.856 930 1.859 685 1.859 603
8 1.896 976 1.743 778 1.934 765

We can see that the method with fixed inertia weight presented the best fitness results, followed by the method with nonlinear
variation of the inertia. However, the method with nonlinear variation of the inertia presented a greater efficiency. To obtain more
meaningful results, we need to make statistics tests, running the PSO algorithm many times to each configuration.

5.2. Statistical Experimental Results for the Inertia Weight Variation
In the tests of variation of the inertia coefficient, we will use only configurations 1 (for being the originally implemented in the
program), 2, 3, 4 and 5.
In the experiments carried out in this work, we set the final value of the inertia equal to zero. The input value k varies according to
the following Eq. (18).

...,6 1,     were,4.0 =×= jjk  (18)
The algorithm was executed 30 times for each configuration with each value of k. The fitness average values for each tested
configuration and the values of k that had generated such results can be seen in Table 4.

Table 4. Best input values of k for each type of inertia weight variation.

Inertia Weight
Fixed Linear Variation Nonlinear VariationConfig

k Fitness k Fitness k Fitness
1 0.8 1.86030 1.2 1.86030 0.8 1.86013
2 0.8 1.83500 0.8 1.82250 1.2 1.84573
3 0.8 1.85427 0.8 1.87043 1.2 1.86550
4 0.8 1.83907 1.6 1.84713 2.4 1.86450
5 1.2 1.87640 1.2 1.87843 2.0 1.88417
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From Table 3 we can see that configuration 5 got the best results of fitness average for any type inertia weight variation. Therefore,
we will start to use the configuration 5 in the implementation of the OtimRiser and the best values of k for each type of inertia weight
variation can be used as default values of the program.
Although the maximum value of the objective function is not known, the highest fitness value found in all the tests carried through
was 1.953.

6. Conclusion
The objective of this work was to find values for the parameters of the PSO algorithm, so that, applied to the project of risers, we got
a good result with the smallest number of evaluations of the objective function. Our experiments had shown that the configuration
initially implemented in the OtimRiser did not get the best results. The OtimRiser program is currently under construction and being
updated, so the results of the analysis presented here will be used as default input values for the PSO parameters. With the alteration
of those values, we expect to get better results in a static or even dynamic analysis of the problem.
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